
Project Number 101017258

D2.3 Collaborative Sensor Fusion

Version 1.0
5 September 2022

Final

Public Distribution

University of Luxembourg

Project Partners: Aero41, ATB, AVL, Bonn-Rhein-Sieg University, Cyprus Civil Defence, Domaine
Kox, FORTH, Fraunhofer IESE, KIOS, KUKA Assembly & Test, Locomotec,
Luxsense, The Open Group, Technology Transfer Systems, University of Hull,
University of Luxembourg, University of York

Every effort has been made to ensure that all statements and information contained herein are accurate, however the
SESAME Project Partners accept no liability for any error or omission in the same.

© 2022 Copyright in this document remains vested in the SESAME Project Partners.

D2.3 Collaborative Sensor Fusion

Project Partner Contact Information
Aero41 ATB
Frédéric Hemmeler Sebastian Scholze
Chemin de Mornex 3 Wiener Strasse 1
1003 Lausanne 28359 Bremen
Switzerland Germany
E-mail: frederic.hemmeler@aero41.ch E-mail: scholze@atb-bremen.de
AVL Bonn-Rhein-Sieg University
Martin Weinzerl Nico Hochgeschwender
Hans-List-Platz 1 Grantham-Allee 20
8020 Graz 53757 Sankt Augustin
Austria Germany
E-mail: martin.weinzerl@avl.com E-mail: nico.hochgeschwender@h-brs.de
Cyprus Civil Defence Domaine Kox
Eftychia Stokkou Corinne Kox
Cyprus Ministry of Interior 6 Rue des Prés
1453 Lefkosia 5561 Remich
Cyprus Luxembourg
E-mail: estokkou@cd.moi.gov.cy E-mail: corinne@domainekox.lu
FORTH Fraunhofer IESE
Sotiris Ioannidis Daniel Schneider
N Plastira Str 100 Fraunhofer-Platz 1
70013 Heraklion 67663 Kaiserslautern
Greece Germany
E-mail: sotiris@ics.forth.gr E-mail: daniel.schneider@iese.fraunhofer.de
KIOS KUKA Assembly & Test
Maria Michael Michael Laackmann
1 Panepistimiou Avenue Uhthoffstrasse 1
2109 Aglatzia, Nicosia 28757 Bremen
Cyprus Germany
E-mail: mmichael@ucy.ac.cy E-mail: michael.laackmann@kuka.com
Locomotec Luxsense
Sebastian Blumenthal Gilles Rock
Bergiusstrasse 15 85-87 Parc d’Activités
86199 Augsburg 8303 Luxembourg
Germany Luxembourg
E-mail: blumenthal@locomotec.com E-mail: gilles.rock@luxsense.lu
The Open Group Technology Transfer Systems
Scott Hansen Paolo Pedrazzoli
Rond Point Schuman 6, 5th Floor Via Francesco d’Ovidio, 3
1040 Brussels 20131 Milano
Belgium Italy
E-mail: s.hansen@opengroup.org E-mail: pedrazzoli@ttsnetwork.com
University of Hull University of Luxembourg
Yiannis Papadopoulos Miguel Olivares Mendez
Cottingham Road 2 Avenue de l’Universite
Hull HU6 7TQ 4365 Esch-sur-Alzette
United Kingdom Luxembourg
E-mail: y.i.papadopoulos@hull.ac.uk E-mail: miguel.olivaresmendez@uni.lu
University of York
Simos Gerasimou & Nicholas Matragkas
Deramore Lane
York YO10 5GH
United Kingdom
E-mail: simos.gerasimou@york.ac.uk

nicholas.matragkas@york.ac.uk

Page ii Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

Document Control
Version Status Date

0.1 Document outline 3 March 2022
0.2 Initial draft 14 March 2022
0.3 First draft 28 March 2022
0.4 Internal reviews 11 April 2022
0.5 Internal reviews updates 25 April 2022
0.6 Internal reviews 16 May 2022
0.7 Internal reviews updates 24 June 2022
0.8 Final version for partner reviews 31 August 2022
1.0 Final updates and QA review 5 September 2022

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page iii

D2.3 Collaborative Sensor Fusion

Table of Contents

1 Introduction 1

1.1 Document Purpose . 1

1.2 Document Structure . 1

1.3 Relationship to other Deliverables . 2

2 Related Work 3

2.1 Perception . 3

2.1.1 Drone Detection . 3

2.1.2 Semantic Segmentation . 4

2.2 Collaborative Sensor Fusion . 4

3 Methods 6

3.1 Notations and Generalities . 7

3.2 Drone Detection . 8

3.2.1 Drone Detection Training Dataset . 8

3.2.2 Drone Detection Algorithms . 8

3.2.3 YOLOv5 Network Architecture . 8

3.2.4 YOLOv5 Training and Inference . 10

3.3 Position Estimation . 12

3.4 Object Tracking . 12

3.4.1 Image Frame Tracking . 13

3.4.2 Global Frame Tracking . 14

3.4.3 Association . 15

3.5 Segmentation . 15

3.5.1 Semantic Segmentation . 15

3.5.2 Navigable Space Segmentation . 15

3.6 Generic Sensor Fusion Theory . 16

3.6.1 Notation and Generalities . 16

3.6.2 Extended Kalman Filter . 16

3.6.3 Multi-State Constraint Kalman Filter . 18

3.6.4 Unscented Kalman Filter . 18

3.6.5 Sliding Window Least Square . 19

3.7 Collaborative Sensor Fusion: UAV Use Case . 20

3.7.1 Dynamic and Measurement Model . 20

3.7.2 Particularization . 21

Page iv Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

4 Software and Hardware Architecture 23

4.1 Experimental Setup . 24

4.1.1 Detector Drone . 24

4.1.2 Target Drone . 25

5 Experimental Overview and Results 27

5.1 Experimental Overview . 27

5.2 Experimental Results . 29

5.2.1 Experiments with Gazebo Simulation . 29

5.2.2 Experiments with Simulated Relative Position . 30

5.2.3 Indoor / AeroLab Testing . 33

6 Conclusions 39

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page v

D2.3 Collaborative Sensor Fusion

List of Figures

1 The external interfaces between the other modules are shown in terms of inputs and outputs.
The rectangle box illustrates the focuses of this deliverable. 2

2 Overview of the sensor fusion task. 6

3 Coordinate Frames . 7

4 Sample Trained Dataset Images. 9

5 Metrics of Trained You Only Look Once (YOLO)v5 model. 10

6 Loss and Mean Average Precision (mAP) for Training of YOLOv5 model. 11

7 Loss and mAP for Validation of YOLOv5 model. 11

8 Robot Operating System (ROS) Framework for Perception and Collaborative Sensor fusion. . 23

9 Multi-Robot System (MRS) Framework Experimental Setup. 24

10 Pixhawk 4 used in the experiments. a) Detector Drone. It is equipped with a b) Nvidia Jetson
Xavier NX, and c) Intel RealSense D435i Camera along with Inertial Measurement Unit (IMU). 25

11 Target Drone . 26

12 Experimental Overview. 27

13 Operational Scenario: MRS Mission in Autonomous Pest Management in Viticulture Use Case. 28

14 Simulation Testing Results. 29

15 Left: Different views of the aligned trajectories from the Extended Kalman Filter (EKF)
method evaluated with different levels of simulated relative position noise. Right: The dis-
tance error of the aligned trajectories for the EKF method evaluated with different levels of
simulated relative position noise. 30

16 Left: Different views of the aligned trajectories from the Multi-State Constraint Kalman Filter
(MSCKF) method evaluated with different levels of simulated relative position noise. Right:
The distance error of the aligned trajectories for the MSCKF method evaluated with different
levels of simulated relative position noise. 31

17 Left: Different views of the aligned trajectories from the Unscented Kalman Filter (UKF)
method evaluated with different levels of simulated relative position noise. Right: The distance
error of the aligned trajectories for the UKF method evaluated with different levels of simulated
relative position noise. 31

18 Left: Different views of the aligned trajectories from the Sliding Window Least Square
(SWLS) method evaluated with different levels of simulated relative position noise. Right:
The distance error of the aligned trajectories for the SWLS method evaluated with different
levels of simulated relative position noise. 32

19 Left: Aligned trajectory error in three direction for EKF method evaluated with 10cm simulated
relative position noise. Right: Aligned trajectory distance error for EKF method evaluated with
10cm simulated relative position noise. 33

20 Motion capture system setup for the in-lab testing. 34

21 Aerial Robotics Lab (AeroLab) for the Indoor Testing. 35

22 Sample Target Drone Detection Results. 36

23 Sample Semantic Segmentation Results. 37

24 Flyable space segmentation map. 38

Page vi Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

List of Tables

1 Intel RealSense D435i Camera Technical Specifications . 25

2 Nvidia Jetson Xavier NX Module Technical Specifications 26

3 Absolute Trajectory Error (ATE) (cm) of different algorithms (EKF, MSCKF, UKF, and
SWLS) was evaluated with different levels of simulated relative position noise. 32

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page vii

D2.3 Collaborative Sensor Fusion

Acronyms

6DoF Six Degrees of Freedom.

AeroLab Aerial Robotics Lab.
APM Autonomous Pest Management.
ATE Absolute Trajectory Error.

CNN Convolutional Neural Network.
COTS Commercially available Off-The-Shelf components.
CPU Central Processing Unit.
CUDA Compute Unified Architecture.

EKF Extended Kalman Filter.

FCN Fully Convolutional Networks.

GNSS Global Navigation Satellite System.
GPS Global Positioning System.
GPU Graphics Processing Unit.

HDMI High-Definition Multimedia Interface.

IMU Inertial Measurement Unit.
IR Infrared Radiation.

KF Kalman Filter.

LiDAR Light Detection And Ranging.
LS Least Squares.
LU University of Luxembourg.

mAP Mean Average Precision.
MAV Micro Aerial Vehicle.
MIT Massachusetts Institute of Technology.
ML Machine Learning.
MRS Multi-Robot System.
MSCKF Multi-State Constraint Kalman Filter.

OS Operating System.

RADAR RAdio Detection And Ranging.
RAM Random Access Memory.
RCNN Region Based Convolutional Neural Networks.
RGB Red, Green and Blue.
RGB-D Red, Green, Blue and Depth.
ROS Robot Operating System.

Page viii Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

RSCNN Residual Shuffling Convolutional Neural Network.
RSRCNN Road Structure Refined Convolutional Neural Net-

work.

SDK Software Development Kit.
SESAME Secure and Safe Multi-Robot Systems.
SSD Single-Shot Detector.
SWLS Sliding Window Least Square.

TOPS Tera Operations Per Second.

UAV Unmanned Aerial Vehicle.
UKF Unscented Kalman Filter.
USB Universal Serial Bus.
UWB Ultra Wide Band.

VIO Visual Inertial Odometry.
VRAM Video Random Access Memory.

WP Work Package.

YOLO You Only Look Once.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page ix

D2.3 Collaborative Sensor Fusion

Executive Summary

This deliverable reports on the perception and collaborative sensor fusion methods and algorithms developed
in Task 2.3 as part of the Secure and Safe Multi-Robot Systems (SESAME) project. The primary objective
is to develop perception and collaborative sensor fusion mechanisms that allow robots to comprehend their
environment accurately. We consider vision-based sensors to develop object detection, object tracking, and
semantic segmentation algorithms for scene understanding. State-of-the-art deep learning techniques are ex-
tended for the tasks required in the work package 2. Further sections of the report describe the methods and
algorithms used in Task 2.3 of the SESAME project.

Page x Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

1 Introduction

Perception is one of the key capabilities enabling robots to sense their environment, understand it, and make
decisions. In robotics, perception can come from a wide variety of sensors. Usually, we differentiate active
sensors such as Light Detection And Rangings (LiDARs), Global Positioning Systems (GPSs), or ultrasonics
range finder, from passive sensors such as magnetometers, accelerometers, or cameras. Since a robot relies on
the sensors for perception, incomplete or unreliable information such as faulty sensors or limitations in their
field of view significantly reduces the robot’s ability to complete its mission successfully. MRSs can mitigate
this risk by fusing fragmented, or partially correct information, from robotic team members to collaboratively
compose a more accurate representation of the environment, thus, supporting reliable reasoning and better
decision-making. The SESAME project aims to develop novel collaborative perception capabilities relying
on robust object detection and position estimation methods for robot localization and navigation. Building on
recent advances in deep learning, the perception algorithms proposed here enable safe and robust navigation of
robots by fusing the position estimation of a target robot provided by an observer robot. This extra-information,
could, for instance, allow the target robot to recover from a faulty GPS sensor. Furthermore, we provide
segmentation maps of the robot view as well as a map of the navigable space. Hence, our project is articulated
around five key elements, the detection of objects, the pose estimation of these detected objects, the tracking
of these detections, the fusion of the onboard sensors with the information provided by the observer robot, and
finally the segmentation of images and the navigable space. To evaluate our algorithms on task 2.3, we chose
to focus on a complex scenario, in which drones are collaborating to navigate in open areas.

1.1 Document Purpose

This is the third deliverable of the Work Package (WP) 2, "D2.3: Collaborative Sensor Fusion" of the SESAME
project. The primary objective of this report is to describe the current state of development of the perception
and the collaborative sensor fusion modules.

This document details the choices behind the sensors and computational capabilities of the different aerial
robotic platforms. It also describes the interfaces between the different modules. Additionally, it provides in-
depth details of the algorithms behind the perception and collaborative sensor fusion modules. And finally, it
provides some early results regarding the performance of the different algorithms.

This report lays the groundwork to base the work and research of task 2.4 (WP2). The system development
process follows an engineering systems design approach (SESAME Methodology). It starts from the speci-
fications and functionalities identified in the previous Deliverable D2.1 “Specification of MRS Capabilities”,
submitted in Month 12 of the project (M12), and it derives the development concepts in order to fulfill the
goals of task 2.3 (WP2).

1.2 Document Structure

This Deliverable D2.3 consists of the following sections:

• Section 2 gives an overview of the related work in the field of MRS, with particular attention to percep-
tion and collaborative sensor fusion.

• Section 3 describes the perception and collaborative sensor fusion methods and algorithms for MRS as
well as the segmentation.

• Section 4 explains the perception and collaborative sensor fusion development (software and hardware
architecture) along with the experimental setup in detail.

• Section 5 describes the experimental overview and test results.
• Section 6 concludes this report.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 1

D2.3 Collaborative Sensor Fusion

1.3 Relationship to other Deliverables

Based on task 2.3 of the SESAME project, this deliverable (D2.3) provides details on how the perception
and collaborative sensor fusion are achieved. It also provides insights on how these algorithms can be used
for collaborative localization and navigation. This task interfaces with task 2.4, “perception aware trajectory
planning and tracking”, which will rely on our sensor fusion algorithm as well as our segmentation of the
flyable space. On top of these required information, we also provide additional data as ROS messages. Using
our detection and tracking algorithms, we output the bounding boxes of the detected objects. As of today, we
are solely interested in drones, but these capabilities could easily be expanded if the need arose. From the pose
estimation, we provide the relative and global position of the target drone. The very same pose that is used
inside our sensor-fusion algorithms.

An external interface diagram is represented in Figure 1. The rectangle box in Figure 1 illustrates the focuses
of the present deliverable.

Figure 1: The external interfaces between the other modules are shown in terms of inputs and outputs. The rectangle box illustrates the focuses of this
deliverable.

Page 2 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

2 Related Work

Collaborative MRS application scenarios require a rich, consistent, and accurate understanding of the environ-
ment and robot state. While single robots frequently suffer from sensor limitations (e.g., range, occlusion),
robotic teams can combine multiple observations and share their results. Related work for perception and col-
laborative sensor fusion focuses on improving localization [1], planning [2], mapping [3], and object detection
and tracking [4]. In addition, the efficient combination of both sensor limitations and movement commands of
robots, known as active perception, has been studied for single robots [5] as well as for MRS [1], [2].

2.1 Perception

2.1.1 Drone Detection

In recent years, drone detection, and recognition have received much attention in various applications [6], [7],
[8]. The concept of drone detection is the ability to detect the presence of a drone. Recognition is the ability
to recognize the target drone. The problem of drone detection was investigated using the drone dataset and
the proposed drone detection method. According to the studies [9], [10], the dataset for drone detection is
obtained using active and passive sensors. In these studies related to the detection and recognition of drones
using active sensors, the use of RAdio Detection And Ranging (RADAR) [9] and LiDAR [10] sensors is
discussed. Problems with both of these sensors include high costs and limited integration into small drones.
In addition, the use of thermal sensors results in lower accuracy due to low spatial resolution, and the use
of acoustic sensors in drone detection and recognition has limitations such as high cost and limited onboard
use. Therefore, due to the aforementioned limitations of using active sensors, visible imagery was used in the
context of passive sensors that do not have the mentioned problems and do not have weight limitations when
integrated into small drones. As previously mentioned, issues such as the unpredictable movements and speed
of drones, the long-distance of the drone, its close resemblance to birds, its small size, the presence of hidden
areas in the images, crowded backgrounds, the inability to separate the background, the problems with light
in visible images, and different weather conditions challenge drone detection and recognition. For this reason,
new methods of deep learning are used to solve the challenges based on studies.

In 2001, [11] detected moving objects using a set of visible images with fixed background and edge tracker
methods. The object is then detected by finding the edge difference in successive images [11]. In 2011, [12] in a
study called vision-based air collision detection system, detected drones using morphological filters to prevent
airborne collisions. In 2016, [13] detected drones using background subtraction and image-based methods.
Moreover, [14] proposed a new drone detection method by mounting cameras on a large variety of drones. In
this work, the drone was detected by computing background motion with a perspective transformation model
and detecting moving objects by foreground spatio-temporal features [14]. In 2017, [15] detected the drone
using visible images and image sensors. In this study, the drone is detected using a saliency map, and it is
localized using a Kalman filter [15]. In these studies, the traditional method of background subtraction has been
used to detect drones, which do not have the appropriate accuracy and speed compared to modern methods.
Later, researchers detected drones in a set of visible images using artificial intelligence-based methods and
using VGG16 [16], and YOLO v2 (YOLOv2) neural networks [17]. The limitation of these studies was the
low accuracy in detecting drones, which was improved in later studies by improving the methods used. In
2018, [18] detected drones in video datasets by subtracting background images and classification methods
based on deep learning networks. In this article, the Kalman filter is applied to moving objects for better
detection [18]. In this study, the deep learning method used can improve the accuracy of diagnosis using
visual information. In 2019, drone detection was performed using YOLO [19], Faster-RCNN [20], and Single-
Shot Detector (SSD) [20] methods. Region Based Convolutional Neural Networks (RCNN) and SSD methods
were used to detect drones in video datasets, with the RCNN method showing better accuracy. The use of
the YOLOv3 deep learning network in this study has resulted in improved accuracy and precision of drone
detection compared to other methods due to its lightweight architecture and appropriate depth. In 2020, drones

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 3

D2.3 Collaborative Sensor Fusion

were detected using YOLOv2, YOLOv3 [21], tiny-YOLOv3, YOLOv4 [22], Fast-RCNN, and SSD networks
and the results were compared [22]. The three models YOLOv4, YOLOv3, and SSD were compared, and,
respectively, YOLOv4, YOLOv3, and SSD had the best accuracy.

In 2021, using a deep learning network, the challenges in drone detection were examined below in more
detail. In this year, segmentation-based methods were used to detect drones in crowded backgrounds [23],
and another study detected drones in real-time using the YOLOv3 network on Nvidia Jetson TX2 hardware
[24]. The use of this method has provided good accuracy and speed and is capable of detecting drones of
various sizes. Other methods used to detect drones include Faster-RCNN, SSD, YOLOv3, and DETR, whose
performance was examined in a series of visible images [25]. All the methods used in this study performed well
in detecting drones, but YOLOv3 provided the best precision. Researchers have also recently used YOLOv4
[26], a pruned YOLOv4 [27], RetinaNet, FCOS, and YOLOv3 network in video and image datasets to achieve
high accuracy in drone detection. The use of YOLOv4 in the first study provided acceptable drone detection
results compared to similar studies and had better accuracy. Furthermore, in the next study, the networks
used had good accuracy but good performance in detecting small and fast drones. Therefore, the pruned
YOLOv4 method gave better performance compared to these methods. In 2021, [28] identified several types
of multirotors and a fixed-wing with their commercial models in video sequences. The diagnostic system
in this work is associated with a warning algorithm that sounds when the drone is observed. In this work,
the standard Cascade R-CNN (Regions with Convolutional Neural Networks) architecture, Faster R-CNN,
YOLOv3, YOLOv4, and YOLOv5 network were used to identify drones vs. birds. The discussion on detection
in a variety of backgrounds with additional data also needs to be extended [28]. Based on the results of the
studies, the YOLOv5 deep learning network presents higher accuracy and speed in detecting and recognizing
drones in visible imagery than conventional methods. Therefore, this method was used to detect the drones.

2.1.2 Semantic Segmentation

Semantic segmentation is different from object detection as it does not aim at predicting bounding boxes
around the objects. It does not distinguish between different instances of the same object. In order to perform
semantic segmentation, a higher level understanding of the image is required. The algorithm should figure out
the objects present and also the pixels which correspond to the object. Semantic segmentation is one of the
essential tasks for complete scene understanding. Semantic segmentation divides the image into regions and
labels each region with a predefined class label. Identifying the layout of the scene provides information about
the spatial distribution of the object and its relationship with the environment. A brief overview of semantic
segmentation is presented below. A detailed review of image semantic segmentation can be found in [29], [30].

The major focus on semantic segmentation in the aerial environment is currently dedicated to drones. The
most exploited Convolutional Neural Networks (CNNs) in this field are the utilized Road Structure Refined
Convolutional Neural Network (RSRCNN) model for road extraction in aerial scenes [31], tree-like structured
CNN feature extractor [32], multi-modal data [33] as an input to a Residual Shuffling Convolutional Neural
Network (RSCNN) [34], and Fully Convolutional Networks (FCN) based model [34]. We use a PyTorch im-
plementation of semantic segmentation models on the Massachusetts Institute of Technology (MIT) ADE20K
scene parsing dataset for this work [35]. ADE20K is the largest open source dataset for semantic segmentation
and scene parsing, released by MIT Computer Vision team [36], [37].

2.2 Collaborative Sensor Fusion

Existing sensor fusion methods can generally be divided into filter-based or optimization-based methods [38],
both of which are widely used in robotic applications. A multi-sensor fusion algorithm based on the EKF
approach is proposed in [39], and [40]. This framework supports any number of sensors and can efficiently
handle relative time state constraints. In [41], a UKF based framework is proposed, which also supports
different types of absolute state update and relative time state update. Compared with EKF, UKF does not

Page 4 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

need to derive a Jacobian matrix. However, due to the sampling numbers of the state vector, the computation
load of this method increases, and it also brings new challenges to state augmentation. The optimization-
based state estimation algorithm is another optional framework [42], [43]. Although theoretically, the method
based on optimization can obtain higher accuracy due to multi-step iterative optimization, due to the influence
of various parameter settings and implementation, the method based on filtering can also achieve accuracy
comparable to the optimization-based method [44], [45], [46].

The purpose of multi-robot cooperative state estimation is that the localization of a single robot can not only
use its own sensors, but also fuse the sensors or localization results of other robots, received through the
communication system. The MRS is considered as a coupled system. The sensor information of different
robots is connected to a network structure through the communication system. This structure requires high
efficiency of calculation and high timeliness of communication. In [47], the benefits of collaborative state
estimation are summarized as:

1, The state estimation of a single robot is improved by the information sent from other robots. For example,
low precision sensors on a single robot can benefit from high precision sensors on other robots.

2, Provide redundancy in case of sensor failure. For example, when a single robot performs Visual Inertial
Odometry (VIO) localization, the camera or IMU suddenly fails, and its state estimation can be recovered by
other robots through relative localization.

The computing architecture of collaborative state estimation can be divided into centralized and decentralized.
The centralized architecture is a single server connecting with multiple clients. And all coupling calculations
are completed in the server. This has high requirements for the security of the communication system and the
server between clients. Once the server fails, all calculations will end. The decentralized architecture uses
peer-to-peer communication to complete information fusion on a single robot. In recent years, many papers
have used decentralized or distributed architecture to implement collaborative state estimation. In [48], [47]
and [49] consider the general decentralized collaborative state estimation for multiple sensors. [50] and [51]
are two systems focusing on cooperative VIO for multi robot. The back-end of these systems is based on
Kalman filter. In addition, [52] proposed a back-end based on SWLS optimization to fuse VI-Sensor and Ultra
Wide Band (UWB) measurements.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 5

D2.3 Collaborative Sensor Fusion

3 Methods

In this section, we will introduce the different methods that we designed to solve task 2.3. One of the primary
objective of this project is to robustly estimate the pose of a robot using its own sensors, but also using posi-
tion estimates shared by other robots in its vicinity. More precisely, we will demonstrate the applicability of
our algorithms using two drones: a detector drone, whose goal is to estimate the position of a target drone.
Using this position estimation and its own sensors, the target drone estimates its position robustly. Using the
extra information provided by the detector drone, the target drone can still estimate its state even if one of its
positioning sensors were to fail. To estimate the position of the target drone, we rely on camera images and a
depth sensor of the detector drone. Using a neural-network specifically trained to detect drones in images, we
first identify the target drone in the image. Then, using a depth sensor, we measure the distance to the target
drone. Leveraging this distance information, we can then estimate the relative position of the target drone in
the detector drone’s frame. This position is then projected into a global frame and share with the target drone.
Figure 2 provides an overview of this objective.

Figure 2: Overview of the sensor fusion task.

The second goal of this task is to provide scene understanding to the robot. We choose to train a semantic
segmentation neural-network to provide high level context to the robot. This is not the only way to achieve
this, but it was the most appropriate here. Similarly to the sensor fusion, we apply our algorithms to drones. In
this case, we build two different algorithms. One provides information regarding the occupancy of the space in
front of the drone, i.e. it detects obstacles and free space in front of the drone. The other labels image region,

Page 6 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

in the case of the drone, we segment the pixels that belong to the ground or a wall for instance. On a rover, this
information could be used to detect unsafe areas, such as avoiding stairs.

3.1 Notations and Generalities

Before going through the different algorithms, let us take the time to define some of the notations that will be
used in the rest of this document.

A vector from A to B is expressed as rAB . The coordinates of this vector in the coordinate system C is
expressed as CrAB . In this report, we use quaternions to represent the rotation of rigid bodies, which is a non-
singular expression. A detailed introduction to quaternions and their properties can be found in [53]. qBA

denote the attitude of a coordinate frame B with respect to frame A, with the corresponding rotation matrix
R (qBA). The coordinate transformation is expressed as follows:

Br = R (qBA)Ar (1)

According to quaternion algebra, we need to pay special attention to the addition of quaternion, q + δ, and
the subtraction between two quaternions q1 − q2, as they involve the operation between manifold and tangent
space. The exponential mapping exp (•) maps a vector in tangent space to a quaternion. The logarithmic
mapping does the opposite.

q + δ := q ⊗ exp
(
δ
2

)
q1 − q2 := 2 log

(
q−1
2 ⊗ q1

) (2)

Here, δ is a vector in tangent space, and ⊗ represents quaternion multiplication.

Figure 3: Coordinate Frames

Formally, our problem scenario is defined as follows. Let us define the world coordinate system as W , and the
IMU coordinate system as I . In our use case, we consider two Unmanned Aerial Vehicles (UAVs), as shown
in the Figure 3. I1 is the IMU frame of UAV1 and I2 is the IMU frame of UAV2. We make the following
assumption:

• The global localization of UAV1 is reliable, which means we can get UAV1’s full pose.
• The IMU of UAV2 always works, but all other sensors of UAV2 used for global localization may fail.

I.e. the global localization module of UAV2 may not be working all the time.
• UAV1 can provide the relative position between UAV1 and UAV2 through visual perception. This

relative position can always be expressed as a global position.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 7

D2.3 Collaborative Sensor Fusion

3.2 Drone Detection

This module is used to detect drones within the field of view of the detector drone. The drone detection
algorithm detects drones using images captured by the Red, Green, Blue and Depth (RGB-D) camera mounted
on detector drones.

3.2.1 Drone Detection Training Dataset

To be able to detect drones, we train an object detection neural-network, i.e.YOLOv5 [54]. However, in order
to train, we first need a dataset. Hence, we collected 1, 339 images from videos of drones flying inside the
AeroLab of University of Luxembourg (LU). These images were annotated by manually drawing bounding
boxes around the target drone. We only labeled the target drone to ensure it would detect the target drone and
not others.

All images are labeled using RoboFlow1, an image labeling tool. To optimize the labeling time, we only
label one out of ten to thirty frames. If the drone has a large inter-frame movement, then we increase the
labeling frequency, conversely, if the drone has low inter-frame movement we reduce the labeling frequency.
To improve the robustness of our model against object motion, false positives, and motion blur, we include
images with a wide variety of settings with intricate backgrounds (including chairs, fences, and other drones).
Empirically, we found that without adding these random objects our detector would confuse the detector drone
with bars, or truss. To further improve the robustness of our detector towards noise, and motion, we also add
synthetic motion blur of various intensity, as well as typical data-augmentation, to the images. Adding these
effects on the images robustifies our detector. We show some sample images of our dataset in Figure 4.

Among the 1, 339 images in the current dataset, we randomly select 90% for the training dataset and retain the
remaining 10% as the testing dataset.

3.2.2 Drone Detection Algorithms

As alluded to earlier, our goal is to detect and track the target drone in the images captured by an RGB-D
camera mounted on the detector drone. Using the bounding box of the target drone and the depth image, we
then estimate the position of this target drone within the camera frame. We can then project the position into
a global frame using the onboard Global Navigation Satellite System (GNSS) sensors, and then be supplied
to the target drone. This drone being able to use this information within its own sensor fusion algorithms if
one of its sensors were to fail. The first step to achieve our goal is the detection of the drone. To do so, we
choose to rely on Deep-Neural-Network-based object detection models. More precisely, we used YOLOv5 as
it offers a good trade-off between detection accuracy, and compute cost. In our case, the computational cost
of the detection algorithm is critical. The object detection algorithm will be running onboard a medium size
drone with limited compute capacities.

3.2.3 YOLOv5 Network Architecture

To perform the detection, we use the smallest version of YOLOv5, the S version. Unlike the other larger
variants of YOLOv5, this smaller version has nine convolutional layers with 3×3 kernel layers and six pooling
layers with 2 × 2 kernel layers. The final output of our network is a tensor of size 13 × 13 × 30. These
modifications make its memory footprint smaller, and significantly reduces its inference time. This makes it
ideal for embedded applications. The drawback being a decrease in accuracy. However, the performance drop
remains acceptable because we only seek to detect drones. Compared to the original algorithm, we only detect
a single class, drones, instead of 80.

1https://roboflow.com/

Page 8 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

Figure 4: Sample Trained Dataset Images.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 9

D2.3 Collaborative Sensor Fusion

3.2.4 YOLOv5 Training and Inference

The YOLOv5 model is trained on a Google Cloud Server equipped with an Nvidia Tesla P100 Graphics
Processing Unit (GPU). Because it’s a small model, the training takes a short amount of time. Please note that
the training can be carried on any recent GPUs with 2 or more 4GB. However, we recommend a GPU with 10
to 12GB of Video Random Access Memory (VRAM) as it allows training on larger batch-sizes, improving the
overall performance of the drone detection algorithm.

To further improve the detector’s performance, we resume the training using pre-trained weights. We use
YOLO’s default training weights as described in YOLOv5 [54]. The training and testing of neural networks
are implemented in PyTorch 2, metrics, training, and validation are shown in Figure 5, 6, 7.

As for the inference of the network, we use TensorRT a common framework to execute quantize neural-
network models. While we could use PyTorch directly, recent Machine Learning (ML) frameworks do not
support Python 2.7. This is a problem as Ubuntu 18.04, the Xavier’s Operating System (OS) comes with ROS
Melodic, which only support Python 2.7. Hence, to make it work we would need to run a docker with Ubuntu
20.04, increasing the complexity of the system.

One of the main benefits of TensorRT is that it can be used inside C++ code, making it agnostic to the OS
distribution, or ROS version. Furthermore, TensorRT optimizes the execution of a model on a specific GPU,
improving the inference time.

Hence, we convert the PyTorch weights into an ONNX model, which we then convert into a TensorRT engine
allowing us to optimize execution of the YOLOv5 S model for the Xavier. The model is then called inside a
ROS Melodic node written in C++ and Compute Unified Architecture (CUDA).

Figure 5: Metrics of Trained YOLOv5 model.

2https://github.com/ultralytics/yolov5

Page 10 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

Figure 6: Loss and mAP for Training of YOLOv5 model.

Figure 7: Loss and mAP for Validation of YOLOv5 model.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 11

D2.3 Collaborative Sensor Fusion

3.3 Position Estimation

Assuming the bounding box of the target drone is obtained, we denote (u, v) as the pixel coordinates of the
box’s center. The depth value Z is acquired from the depth camera. With these variables known, the relative
position of the target drone can be calculated by following the pin-hole model, as in Equation (3).

 X
Y
Z

 =

 fx 0 cx
0 fy cy
0 0 1

−1 u
v
1

Z (3)

Even though, this simple model does not account for advanced lens distortion, like a plumb-blob model would,
the pin-hole model position estimation are good enough. The plumb-blob model adds a lot of complexity,
which increase the computational cost of the algorithm. Indeed, with the plumb-blob model, the transform is
non-invertible. Hence, it requires gradient descent to find the inverse transform for each pixel.

One of the main challenge, when estimating the position of an object from images, is measuring the distance
between the drone and camera. The bounding box is not always centered around the drone, which means that
sometimes, taking the center coordinates can result in probing the space behind the drone, leading to erroneous
measurements. Another issue comes from the relatively high level of noise present on the depth images from
commercial RBG-D cameras, making the Z measurement fluctuate by a significant margin. To address both of
these concerns, we measure the distance between every pixel within the bounding-box and the detector’s drone
camera using the pin-hole model. We store all these values inside a vector that we then sort from the smallest
values to the largest. The first 5% are considered as outliers and rejected, the following 10% are averaged
and used as the distance between the target drone and the camera. This distance is then reinjected inside the
pin-hole model to compute the relative position of the target drone, as shown in Equation 4.

d =
√

X2 + Y 2 + Z2

X = Z ∗ u− cx

fx

Y = Z ∗ v − cy

fy

Z =
d√

u−cx
fx

2
+ v−cy

fy

2
+ 1

(4)

Leveraging this process, the measured distance is stable and the relative position improved. However, there is
an offset due to the fact that we are averaging on 10% of the closest points. This offset needs to be calibrated
for all the drones. On our drones, it is of around 15cm. Finally, since we know the global pose of the detector
drone, we can then project the relative position of the detector drone into the global frame.

3.4 Object Tracking

Now that we have a mean to detect the target drone, we need to track it. Indeed, when the detector misses
the drone in an image, we still have to know where it is. Also, tracking the drone allows rejecting outliers,
or detecting multiple drones in parallel without confusing them. This problem of multi-target tracking is non-
trivial, as this kind of tracker requires extensive tuning to work reliably.

In this work package, we choose to use a conservative tracker design. The propagation of the state is based on
Kalman filters, while the association problem is solved using the Hungarian Matching algorithm []. To track,
we first need to define a state, in our case there are two possible ways to define the state. On the one hand, the
drones can be tracked directly in the image frame, using pixel coordinates. On the other hand, the drones can

Page 12 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

be tracked in the global frame using the estimated xyz coordinates. Tracking in the global frame is simpler and
provides significant advantages, however, it is not always possible. Hence, we provide the formulation of both
problems.

3.4.1 Image Frame Tracking

When tracking objects directly from pixels, we use the center of the bounding boxes noted (u, v). We also want
to keep track of the width and height of the bounding boxes (h,w), as it may help us differentiate between two
objects. Furthermore, to be able to interpolate the position of the target drone in between two frames, we add
to our state the velocity of the drone in pixel per second in the camera frame (u̇, v̇). Hence, we define our state
X as in Equation 5:

X =

u
u
u̇
v̇
h
w

 (5)

Equation 6 shows the dynamics of the tracked objects. We reduce the dynamics to a simple linear system, as
we do not have any information on the commands or orientation of the system being tracked.

F =

1 0 dt 0 0 0
0 1 0 dt 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6)

Equation 7 and 8 represent the observation vector Z and the associated H matrix respectively.

With (uobs, vobs) the observed center of the bounding box, and (hobs, wobs) the height and width of the observed
bounding box. The velocities are not measured, but derived within the Kalman filter.

Z =

uobs
vobs
hobs
wobs

 (7)

H =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (8)

The filter is then updated and corrected following the standard formulas for linear Kalman filters. For the
reader convenience, we recall the prediction and correction equations in Equation 9, and Equation 10 respec-
tively. With Q, the process noise, a diagonal matrix where each coefficient on the diagonal correspond to the
uncertainty on the dynamics of each state of the system. R is the measurement noise, a diagonal matrix where
each element on the diagonal correspond to the noise variance on each measured state.

Xt|t−1 = FXt− 1|t− 1

Pt|t−1 = FPt− 1|t− 1F T +Q
(9)

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 13

D2.3 Collaborative Sensor Fusion

Yt = Zt −HXt|t−1

St = HPt|t−1H
T +R

Kt = Pt|t−1HS−1
t

Xt|t = Xt|t−1 +KtYt

Pt|t = (I −KtH)Pt|t−1

(10)

3.4.2 Global Frame Tracking

Instead of tracking in the image frame, one can track in the global frame. This can be particularly useful, as
now, the only motion is the one of the tracked object, and not the addition of the tracking robot and the tracked
robot. Our state X is defined as in Equation 11. Where x, y, z are the x, y, z coordinates in the global frame,
ẋ, ẏ, ż are the velocities in the global frame, and h,w are the width and height of the bounding box. We keep
the bounding box’s height and width, as it can be used to improve the matching.

X =

x
y
z
ẋ
ẏ
ż
h
w

(11)

Equation 12 shows the dynamics of the tracked objects.

F =

1 0 0 dt 0 0 0 0
0 1 0 0 dt 0 0 0
0 0 1 0 0 dt 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(12)

The observation vector Z and the associated H matrix are given in equation 13 and 14 respectively. With
(xobs, yobs, zobs) the observed global position of the object, and (hobs, wobs) the height and width of the ob-
served bounding box. The velocities are not measured, but derived within the Kalman filter.

Z =

xobs
yobs
zobs
hobs
wobs

 (13)

H =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 (14)

Page 14 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

The filter is then updated and corrected following the formulas given in Equation 9, and Equation 10 respec-
tively.

3.4.3 Association

The goal of the association part in the tracker is to match the currently tracked objects, with the newly observed
objects. To do so, we use the propagation model of either filters (Equation 9). This propagates the previous
states and give us new states to match against the newly observed objects. In the rest of this section, we note
the state of the i-th tracked object at time t as Xi

t , and the j-th newly observed object as Oj
t . To find the most

optimal match we compute the euclidean distance for every possible combination of tracked/observed objects.
To prevent the tracker from making undesirable matches, we add a threshold. If the distance is larger than a
given threshold, then we replace this value with an arbitrarily large value, such as 1e6. The distance function
is given in 15.

di,j =

{
||Xi

t −Oj
t ||, ifdi,j < threshold

1e6, otherwise
(15)

Once the distances are calculated, the matching is performed greedily using the Hungarian Algorithm. This
method solves the assignment problem in polynomial time. Its goal is to minimize the total distance between all
the pair of tracked/observed objects, to find the most optimal set of tracked/observed object pairs. In practice,
this is solved using a bipartite graph [55].

Once the association is done, we evaluate if the match is correct. Sometimes, the assignment algorithm is
producing incorrect matches. Hence, we verify that each match fulfills a set of conditions. In our case, we
measure two things: the euclidean distance between the matched pair, and the ratio between their bounding box
area. The distance prevents from matching objects too far away, while the area ratio prevents from matching
objects of different sizes. If a pair does not match these conditions, it is discarded. Further, the observation
is considered as a new detection, and the tracked object is not matched with anything. If a pair matches these
conditions, the observation is used to correct the state of the tracked object using Equation 10 of the Kalman
filter.

3.5 Segmentation

3.5.1 Semantic Segmentation

Semantic segmentation refers to the process of associating each pixel in an image to a class label. For exam-
ple, these labels could include a drone, person, car, etc., just to mention a few. To do so, we chose to rely on the
PyTorch-based semantic segmentation model. More precisely, our model is made of a ResNet50dilated [56]
for the encoder and a PPM_deepsup [56] for the decoder. This combination offers a good trade-off between
pixel accuracy and inference speed. To train our model, we use two different datasets. For indoor environ-
ments we use ADE20K, one of the largest open source dataset for semantic segmentation and scene parsing,
released by the MIT Computer Vision team. For outdoor environments, we use CMT seasons [57], a large
scale datasets with images captures all around the year. However, there are other large databases available, for
indoor environments, [58], [59], and outdoor scenes [60].

3.5.2 Navigable Space Segmentation

To segment the occupation of 3D space, multiple approaches can be followed. A common representation of
the free and occupied space are cost-maps, most of the time they are 2D representation of the world. They are
widely used for autonomous navigation in robotics, as they are light-weight and efficient. Their disadvantage
is that they are 2D and cannot encode complex 3D information. Another method consists in using octrees,

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 15

D2.3 Collaborative Sensor Fusion

an efficient representation of 3D space. An octree is a tree data structure in which each internal node has
exactly eight children. Unlike voxels, octrees split 3D space of blocks of different size. The blocks are small
if more resolution is needed locally, or big if the information is consistent over a large region. This makes
octrees highly memory efficient, as the discretization of the 3D space depends on information. A popular
implementation of octrees for occupancy segmentation is Octomap [61]. Its main issue is that it is relatively
heavy, and may not be able to run in real-time on the edge-compute-device when the map gets large.

To minimize the drone’s computational load, we chose to build a local 2D cost-map. In this context, local
means the map is expressed in the depth camera’s frame, and only contains the information provided by the
last depth measurement. This map provides the maximum height of the obstacle in the field of view of the
drone. To generate such a map, we use the point cloud generated by the depth camera. This point cloud is
then aligned with the gravity frame. In other words, the point cloud is rotated about the roll and pitch axis of
the drone. This transformation ensures that the z of the point cloud is aligned with the z of the global frame.
To find the transform, we can use two things, the state estimated by the sensor fusion algorithm, or if the state
estimation is not available, one can use an IMU based method. Here, when the state estimation is not available,
we use the IMU filter Madgwick to smooth the IMU measurement and estimate the orientation of the drone
in the quaternion space. This quaternion orientation is then altered to only include an always null yaw. This
new orientation is then converted into a rotation matrix, which we use to project the points into the gravity
aligned frame. With this projection done, we can now use the z values of the points directly as the relative
height between the obstacles and the drone. Finally, to create the cost map, we subdivide the (x,y) space in the
drone frame into small bins. Using the projected point cloud, we take the maximum z value of the points in
each bin and save store their value in the cost-map.

3.6 Generic Sensor Fusion Theory

Sensor fusion consists in using data from multiple sensors such that the resulting information is more accu-
rate. Kalman filters are commonly used tools to perform sensor fusion for pose estimation. This family of
filter has numerous variations. In this deliverable, we compare three classical observers on a state estimation
task: an EKF, a MSCKF, and an UKF. Additionally, the SWLS method has also been adapted to evaluate its
applicability to state estimation.

3.6.1 Notation and Generalities

Typical robotic systems can often be formulated with differential equations, as shown in Equation 16.

ẋ = f (x, u) + nx (16)

Similarly, the measured variables follow the equation given in 17. Where, x is the state vector representing
our system, u is the control input, y is the measured variables, f represents the dynamic of the system, h is the
observation model, and nx and ny are multivariate zero-mean Gaussian noises.

y = h (x) + ny (17)

3.6.2 Extended Kalman Filter

In estimation theory, Kalman filtering is an algorithm that estimates of some unknown variables given the mea-
surements observed over time. This filter has a relatively simple form and requires small computational power,
making it more popular in computational constrained platform. It can also indirectly estimate observable vari-
ables over time. The main advantage of this filter is the minimization of uncertainty effects on the estimated

Page 16 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

variables. The EKF is the nonlinear version of the Kalman filter, which linearizes about an estimate of the
current mean and covariance.

This filter can be adapted to observe the dynamics of the system. To do so, we assume that we obtain the state
vector xk at the time k and the corresponding covariance Pk. In the state vector, we could include observable
variables to estimate their values.

In the standard estimation process, a Kalman Filter (KF) takes sensor measurements as input and, given a
motion model, calculates the state of the system. Thus, leveraging the current state xk, control inputs uk, and
the dynamic equations (16), we can get the next state xk+1 at time k + 1. The model propagation is given in
18.

x← x+ ẋdt
xk+1 = xk + f (xk, uk) dt

(18)

Next, we need to derive the error state dynamic model:

J = ∂f/∂x
δẋ = Jδx

(19)

J is the Jacobian matrix of f with respect to x. After obtaining the matrix J , we can predict the covariance
Pk+1 at the time k + 1:

F = exp (Jdt)
Pk+1 = FPkF

T +Qdt
(20)

Where, F is the process transition matrix, Q is the preset covariance of state noise.

Q =

 σ2
x0

. . .
σ2
xdim(x)−1

 (21)

The i-th element of the main diagonal corresponds to the noise variance of the i-th state. All non-diagonal
elements are 0.

After receiving the measurement, we need to update the state vector and covariance:

ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)T +KRKT

(22)

H is the Jacobian matrix of h with respect to x. R is the preset covariance of measurement noise.

R =

 σ2
y0

. . .
σ2
ydim(y)−1

 (23)

The i-th element of the main diagonal corresponds to the noise variance of the i-th measurement. All non-
diagonal elements are 0.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 17

D2.3 Collaborative Sensor Fusion

3.6.3 Multi-State Constraint Kalman Filter

The idea of this part draws lessons from [62]. First, we define the following state:

x =
(
xI xC

)
xC =

(
xc1 · · · xcN

) (24)

Where, xI represents the head state, and N represents the window size. We get xci through the clone of xI at
different times when we get measurements. The corresponding covariance is given in Equation 25. Where P
is the covariance matrix of x, PII is the variance of xI , PCC is the variance of xC , and PIC is the covariance
between xI and xC . The full derivation of P is described in Equation 28.

P =

(
PII PIC

P T
IC PCC

)
(25)

Similarly to the EKF, leveraging the commands uk along with the dynamic model, we can get the state vector
xk+1 at time k + 1.

xI ← xI + ẋIdt (26)

The complete derivation of the covariance Pk+1 at time k + 1 is given in Equation 27. Where, Q is the preset
covariance of the state noise. J , F , and Q are the same as in EKF (see Section 3.6.2).

F = exp (Jdt)
PII ← FPIIF

T +Qdt

P ←
(

PII FPIC

P T
ICF

T PCC

) (27)

When receiving the measurements, we perform state augmentation, and the covariance must be changed ac-
cordingly:

P =

(
I
∂xc
∂x

)
P

(
I
∂xc
∂x

)T

(28)

The measurement update is similar to the EKF, except that the measurement must be selected within the whole
window.

ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)T +KRKT

(29)

where, R is the measurement noise over the whole window. H and R have the same meaning as in Section
3.6.2.

3.6.4 Unscented Kalman Filter

In this part, we base our work on [63]. We assume that the initial state vector x at is µ and the corresponding
covariance is

∑
.

x =
(
µ µ+ γ

√∑
µ− γ

√∑)
(30)

Page 18 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

where, γ is the tuning parameter. According to the control input and dynamic model, we predict the state
vector and covariance:

xi ← xi + ẋidt

µ←
2l∑
i=0

wmxi∑
←

2l∑
i=0

(xi − µ)wc(xi − µ)T +Qdt

(31)

where, subscript i indicates column number, wm and wc are the corresponding weights, l is the state dimension,
and Q is preset covariance of state noise. It has the same meaning as EKF part.

After receiving the measurement, state and covariance update are as follows:

x =
(
µ µ+ γ

√∑
µ− γ

√∑)
ŷ = h (x)
µy = ŷwm

S =
2l∑
i=0

(ŷi − µy)wc(ŷi − µy)
T +R

K =

(
2l∑
i=0

(xi − µ)wc(ŷi − µy)
T

)
S−1

dµ = K (y − µy)
µ← µ+ dµ∑
←

∑
−KSKT

(32)

where, R is the preset covariance of measurement noise. It has the same meaning as EKF part.

3.6.5 Sliding Window Least Square

The method of Least Squares (LS) is a standard approach in regression analysis to approximate the solution
of over-determined systems. It minimizes the sum of the squares of the residuals made in the results of each
individual equation. Its most prevalent application is in data fitting. Applied to the online identification of
dynamic systems, the algorithm should consider the input and the output over multiple time-steps to avoid
generating outliers due to noise or random faulty measurements from the sensors. Ideally, the LS method
should use all the data collected during the system operation. However, in real-time applications, this might
not be applicable for two reasons. First, the amount of accumulated data could saturate the computational
resources available in the robot. Second, if the system’s dynamics changes over time, the information collected
in the past might not accurately represent the robot’s state in a specific time-step. For this reason, we choose to
apply the SWLS method, in which the LS algorithm is applied on the data of the last n time-steps. This way,
we create a sliding window of data that is used within the algorithm. We adopt the similar approach presented
in [64].

The optimization variables in the sliding window are defined as follows:

χ =
(
x0 x1 · · · xn

)
(33)

Where, n is the size of the sliding window to be tuned offline for each system. Between the two states of the
sliding window, we will integrate the control input to establish their constraints. In order to avoid repeated
integration during the optimization iteration, we define the following pre-integration items: αbk

bk+1
, βbk

bk+1
, and

γbkbk+1
.

Where, k and k + 1 represent the timestamp of adjacent states in the sliding window, and b represents the body
frame.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 19

D2.3 Collaborative Sensor Fusion

Next, we need to derive the error state dynamic model:

δz =
(
δα δβ δγ

)
δzbki+1 = Fδzbki +Gn

F = ∂zbki+1

/
∂zbki

G = ∂zbki+1

/
∂n

(34)

We can then propagate the covariance of pre-integration measurement:

P bk
i+1 = FP bk

i F T +GQGT (35)

Finally, our optimization problem can be written as:

min
χ

{
∥rprior∥2 +

∑∥∥∥rkP (xk)
∥∥∥2
Wk

P

+
∑∥∥∥rkD (

xk xk+1

)∥∥∥2
Wk

D

}
(36)

Where, rprior represents the prior constraint, rkP (xk) represents the measurement residual, rkD
(
xk xk+1

)
represents the dynamics residual. W k

P and W k
D are weight matrix, which can be regarded as the inverse of

covariance matrices.

The expression of rkP (xk) is:
rkP (xk) = y − ŷ = y − h (xk) (37)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=

 αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

γbkbk+1
− γ̂bkbk+1

 (38)

The least square optimization problem is solved by Ceres3.

3.7 Collaborative Sensor Fusion: UAV Use Case

In this subsection, we apply the different tools presented in Section 3.6 to our sensor-fusion task on a UAV. We
start by introducing the system’s dynamic model and measurement model. Then, we detail how our algorithms
track the changes in the state vector and discuss the results of each sensor fusion technique. To elaborate on
the use case, we consider the detector and target drone as UAV 1 and UAV 2, respectively.

3.7.1 Dynamic and Measurement Model

In the following, we focus on the state estimation of UAV 2. The state estimation of UAV 1 is achieved using
VIO and it is not described here.

To be able to estimate the pose of UAV 2, we first need to define the dynamic model of its IMU. We recall
that the pose of the UAV 2 is estimated using both the relative position provided by UAV 1 and the IMU inside
target drone. In Equation 39, we introduce the dynamic model of an IMU. Where, the raw accelerometer and
gyroscope measurements from the IMU are noted a and, ω respectively.

W ṙWI = W vI
W v̇I = R (qWI) (a− ba − na) + g
q̇WI = 1

2qWI ⊗ (ω − bg − ng)

ḃa = nba

ḃg = nbg

(39)

3http://ceres-solver.org/

Page 20 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

With this model in mind we can thus define the state as in Equation 40. Where q, r and v represents the
attitude, the position and the linear velocities of the system respectively, ba is the acceleration bias and bg is
the gyroscope bias. Next, we define the following state vector x :

x =

q
r
v
ba
bg

 (40)

In order to simplify the notations, we do not include the coordinate frame’s subscript in the dynamic equations,
as it will not affect their understanding.

We can define the drone commands u as in Equation 41:

u =

[
a
ω

]
(41)

Furthermore, we assume that we can obtain the following measurements from the state estimator and relative
position calculator inside UAV 1.

y = [r]
r = W rWI2 = W rWI1 +R(qWI1)I1rI1I2

(42)

The VIO system of target drone can provide its own pose estimation W rWI1 and R(qWI1), while the object
detection can provide I1rI1I2 the relative position between the UAV 1 and UAV 2. In the end, we get the
following system equation and measurement equation.

ẋ = f (x, u) + nx =

1
2q ⊗ (ω − bg)

v
R (q) (a− ba) + g

0
0

+ nx

y = h (x) + ny =
[
r
]
+ ny

(43)

Where, nx and ny represent multivariate zero-mean Gaussian noise.

3.7.2 Particularization

To apply these filters to our problem, some modifications must be made. We first define the state used in the
MSCKF, and then derive the equation of the SWLS for our specific problem.

MSCKF Particularization : As detailed in Section 3.6.3, to be able to apply the MSCKF filter, one needs
to define its state. Equation 44 details the state that we will use in our state estimation problem.

xI =
(
q r v ba bg

)
xci =

(
ri

) (44)

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 21

D2.3 Collaborative Sensor Fusion

SWLS Particularization : Regarding the SWLS algorithm, the optimization variables in the sliding win-
dow are defined as follows:

xk =
(
qk rk vk bak bgk

)
, k ∈ [0, n] (45)

Where, n is the size of the sliding window. We integrate the control input between the two states of the sliding
window to establish their constraints. In order to avoid repeated integration during optimization iterations, we
define the following pre-integration terms:

αIk
Ik+1

=
∫ ∫ tk+1

tk
RIk

Iτ
(a− ba − na)dτ

2

βIk
Ik+1

=
∫ tk+1

tk
RIk

Iτ
(a− ba − na)dτ

γIkIk+1
=

∫ tk+1

tk
1
2q

Ik
Iτ
⊗ (ω − bg − ng)dτ

(46)

Where, tk and tk+1 are the timestamp of adjacent states in the sliding window, and I is the IMU frame.

The propagation process of the pre-integration terms are as follows:

αIk
i+1 = αIk

i + βIk
i dt+ 1

2R
(
γIki

)
(a− ba)dt

2

βIk
i+1 = βIk

i +R
(
γIki

)
(a− ba)dt

γIki+1 = γIki ⊗
(

1
1
2(ω − bg)dt

) (47)

dt denotes the time interval between two adjacent control inputs. Then, we derive the error state dynamic
model by linearizing the pre-integration terms as:

δz =
(
δα δβ δγ δba δbg

)
δzIki+1 = FδzIki +Gn

F = ∂zIki+1

/
∂zIki

G = ∂zIki+1

/
∂n

(48)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=

αIk
Ik+1
− α̂Ik

Ik+1

βIk
Ik+1
− β̂Ik

Ik+1

γIkIk+1
− γ̂IkIk+1

bak+1
− bak

bgk+1
− bgk

α̂Ik
Ik+1

= RIk
w

(
pwIk+1

− pwIk − vwIkdt−
1
2gdt

2
)

β̂Ik
Ik+1

= RIk
w

(
vwIk+1

− vwIk − gdt
)

γ̂IkIk+1
= qIkw ⊗ qwIk+1

(49)

Page 22 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

4 Software and Hardware Architecture

To deploy our algorithms, we use a Jetson Xavier NX from Nvidia, it is one of the few onboard computers on
the market that comes with a GPU in such a small form-factor. Also, this board is optimized for robotic uses,
and its power consumption can be tweaked to allocate more (or less) power to the Central Processing Unit
(CPU) or GPU. This is particularly useful to us, as on a drone, the power budget for the onboard computer is
limited. The main drawback of using this board comes from its OS, as of today, the Jetson comes with Ubuntu
18.04. This is an issue as Ubuntu 18.04 uses Python 2.7 as by default, and so does the ROS Melodic, the version
of the ROS that was developed for Ubuntu 18.04. In this project, we use ROS to run our algorithms as it comes
with pre-package sensor interfaces, and allows for simple and efficient implementation of communication
between threaded processes. As explained earlier, the main issues arise from the fact that ROS Melodic uses
Python 2.7, which means that we cannot use state-of-the-art ML framework in ROS natively. One solution
could be to use an Ubuntu 20.04 docker container inside the Xavier to execute the machine learning algorithms,
while the navigation stack: MAVROS (MAVLink + ROS) runs on the native ROS installation. However, this
increases the complexity of the system as we need to set up a ROS Master/Slave configuration on the Xavier
itself, moreover, requiring two different OS versions is cumbersome and harder to maintain. An alternative
solution, the one we choose, is to get rid of python for ML applications, and use C++ instead. Nowadays, most
ML platforms provide simple means to convert or compile their models to binaries that can be called directly
from C++ code, alleviating the need for python entirely, making their execution faster, and the cost of increased
code complexity. Hence, for now, our whole development stack is built upon Ubuntu 18.04 and ROS Melodic.
In addition to the framework to execute our algorithms, we develop simulation environments that allow us to
test our algorithms before deploying them on a real system. This simulation is also tied to Ubuntu 18.04, and
ROS Melodic on the Gazebo robotics simulator.

The proposed SESAME MRS perception and collaborative sensor fusion ROS framework with complete
nodes, topics, and packages is shown in Figure 8. ROS nodes such as position estimation and VIO-stereo
run on the onboard computer of a detector drone (monitor UAV) and provides the global position to the state
estimator ROS node of the target drone (spraying UAV). The state estimator ROS node of the target drone
takes pose data from its onboard IMU and position data from the detector node, performs the sensor fusion,
and provides the accurate pose of the target drone to the navigation ROS node.

Figure 8: ROS Framework for Perception and Collaborative Sensor fusion.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 23

D2.3 Collaborative Sensor Fusion

In the first part, we provide a brief description of the experimental setup. The next section sketches the experi-
mental overview with an operational scenario of autonomous pest management use case. Finally, we describe
the test results in simulation and in real experiments using the AeroLab.

4.1 Experimental Setup

We illustrate perception and collaborative sensor fusion with an autonomous pest management use case opera-
tional scenario that involves two robots (detector drone and target drone) operating in a dynamic environment.
The proposed SESAME MRS framework for autonomous pest management use case operational scenario is
shown in Figure 9.

Figure 9: MRS Framework Experimental Setup.

The complete sensory equipment of the two robots (detector drone and target drone) is explained below.

4.1.1 Detector Drone

The detector drone has Pixhawk 4 [65] as flight controller (see Figure 10). The perception algorithm runs on
the Nvidia Jetson Xavier NX onboard computer with RealSense D435i Camera.

• Intel RealSense D435i Camera (Camera with IMU): The perception and sensor fusion algorithms
described in Section 3 use the stereo, depth, and Red, Green and Blue (RGB) streams as well as the
IMU data from this camera (see Table 1 for the full technical specifications). It is one of the most
widely used cameras in robotics due to its performance, low cost, and small size factor. It is designed
for simple integration, easy-to-use setup, and portability. The D435i belongs to the D400 Intel series,
and it is based on the D4 Vision Processor. On of the key feature of this camera is its ability to generate
depth images without external computational power. It is equipped with a Depth Module able to work
in both indoor and outdoor environments with high resolution and medium-range. As for the IMU, it is

Page 24 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

(a) (b) (c)

Figure 10: Pixhawk 4 used in the experiments. a) Detector Drone. It is equipped with a b) Nvidia Jetson Xavier NX, and c) Intel RealSense D435i
Camera along with IMU.

Table 1: Intel RealSense D435i Camera Technical Specifications

Intel RealSense D435i Camera Specifications
Depth Technology Active Stereoscopic
Operating Range (Min-Max) ∼.11m - 10m
Depth Resolution and FPS 1280 X 720
Depth Field of View 85.2 x 58
RGB Sensor Yes
Tracking Module No
Dimensions 90 mm x 25 mm x 25 mm
System Interface Type Universal Serial Bus (USB) 3.0 Type C

used to estimate the translation and rotation of the robot along Six Degrees of Freedom (6DoF). This
IMU combines accelerometers, and magnometers with gyroscopes to detect translation on three axes, as
well as pitch, yaw and roll. Finally, the camera comes with an RGB Module, and two Infrared Modules.
The RGB module is designed for a resolution up to 1920 × 1080. To create the depth images, the
RealSense uses the two infrared cameras and leverages an Infrared Radiation (IR) projector to improve
the robustness of the stereo depth measurement.
Depending on the lighting condition, the usable range varies between 0.10 m to 10 m. The camera
features a free software developer’s kit: the Intel RealSense Software Development Kit (SDK) 2.0, and
ROS node which we use in this project.

• Nvidia Jetson Xavier NX: The drone detection, position estimation, drone tracking, and segmentation
methods described in Section 3 all run on an Nvidia Jetson Xavier NX (see Table 2 for technical speci-
fications).The Xavier NX belongs to Nvidia’s Jetson product family, a line-up of high performance and
low power consumption boards, design to run real-time artificial intelligence algorithms. They are well-
suited for robotic applications thanks to their small factor and easy integration with other systems. In
particular, the Jetson Xavier NX board is one of the smallest device in the Jetson family and uses only
10W of power in its high-performance profile. The board is built around a 6 cores ARM Cortex CPU
and a 384-core Volta GPU with 8GB of shared memory.
Regarding I/O it is equipped with four 3.1 USB ports that allows to connect up to 4 cameras, an High-
Definition Multimedia Interface (HDMI) as well as an ethernet port. Moreover, it offers the possibility to
use two power interfaces: through a barrel-jack or trough type-c connector, which eases the integration.

4.1.2 Target Drone

The selected base platform for target drone is created mainly from Commercially available Off-The-Shelf
components (COTS) components and 3D printed parts as shown in Figure 11. The platform is built from
the X-layout quadrotor frame on which we have mounted four T-Motor MN3508 KV380 with 1552 folding

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 25

D2.3 Collaborative Sensor Fusion

Table 2: Nvidia Jetson Xavier NX Module Technical Specifications

Nvidia Jetson Xavier NX Specifications
AI Performance 21 Tera Operations Per Second (TOPS)
GPU 384-core Nvidia Volta GPU with 48 Tensor Cores
glscpu 6-core Nvidia Carmel ARM v8.2 64-bit glscpu 6MB L2 + 4MB L3
Memory 8 GB 128-bit LPDDR4x 59.7GB/s
Storage 16 GB eMMC 5.1
Power 10 W | 15 W | 20 W
PCIe 1 x1 (PCIe Gen3) + 1 x4 (PCIe Gen4), total 144 GT/s

CSI Camera
Up to 6 cameras (24 via virtual channels)
14 lanes (3x4 or 6x2) MIPI CSI-2
D-PHY 1.2 (up to 30 Gbps)

Video Encode
2x 4K60 | 4x 4K30 | 10x 1080p60 | 22x 1080p30 (H.265)
2x 4K60 | 4x 4K30 | 10x 1080p60 | 20x 1080p30 (H.264)

Video Decode
2x 8K30 | 6x 4K60 | 12x 4K30 | 22x 1080p60 | 44x 1080p30 (H.265)
2x 4K60 | 6x 4K30 | 10x 1080p60 | 22x 1080p30 (H.264)

Display 2 multi-mode DP 1.4/eDP 1.4/HDMI 2.0
DL Accelerator 2x NVDLA Engines
Vision Accelerator 7-Way VLIW Vision Processor
Networking 10/100/1000 BASE-T Ethernet
Mechanical 69.6 mm x 45 mm, 260-pin SO-DIMM connector

propellers, the CUAV V5+ flight controller unit running the PX4 flight stack, IMU, the RealSense D435i
(Camera with IMU), and an Intel NUC onboard computer. This NUC from intel contains an Intel i7 glscpu
paired with 16 GB of Random Access Memory (RAM). It runs Ubuntu 18.04 LTS with ROS Melodic [66].

Figure 11: Target Drone

Page 26 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

5 Experimental Overview and Results

5.1 Experimental Overview

In this section, we describe the experimental plan for perception and collaborative sensor fusion. In order
to conduct the in-lab experiments, we divided the experiments into two parts — a) perception, and b) sensor
fusion.

• Perception: We use YOLOv5 [54] in order to detect the object. Specifically, we consider the Au-
tonomous Pest Management (APM) in viticulture use case to develop the proof of concept. Therefore,
we consider the drone as an object in this context. As discussed in Section 3.2, the traditional YOLOv5
network recognizes 80 classes. However, the accuracy level in detecting the drone is low. Hence, the
first step of object detection is to create a data set for the drone in order to train the YOLOv5 network.
We use two heterogeneous drones — a) detector drone and b) target drone to generate the datasets. We
describe the in-lab experimental scenario (Figure 12) for the real operational scenario of the APM in
viticulture use case (Figure 13). Robot 1 acts as a detector drone with a camera and IMU. On the other
hand, Robot 2 acts as a target drone with an IMU. Once the detector drone acquires the images of the
target drone, the next step is to generate data set and train the YOLOv5 network as described in Section
3.2. Finally, the detector drone (Robot 1 in Figure 12) detects the target drone (Robot 2 in Figure 12) as
described in Section 3.2.2. Additionally, the drone detection algorithm generates the relative position of
target drone (Robot 2) from the detector drone (Robot 1), which is an essential part of the sensor fusion.

• Sensor Fusion: One of the primary objectives of the Task 2.3 is sensor fusion. In this context, the target
drone (Robot 2 in Figure 12) loses its localization information due to sensor failure. Therefore, the
target drone requires some external input for localization. Sensor fusion plays an essential role here. As
shown in Figure 12, the detector drone (Robot 1 in Figure 12) detects the target drone using its vision
and produces a relative position P12 of the target drone. Also, the detector drone knows its current
position Pw1 in the global frame. Therefore, the the position of the target drone with respected to global
frame is Pw2 = P12 + Pw1. The target drone receives its relative position in real-time from the detector
drone in order to pass its current position to EKF for pose estimation.

Figure 12: Experimental Overview.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 27

D2.3 Collaborative Sensor Fusion

Figure 13: Operational Scenario: MRS Mission in Autonomous Pest Management in Viticulture Use Case.

Page 28 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

5.2 Experimental Results

This section covers the proposed perception and collaborative sensor fusion experimental evaluation results on
simulation and prototype research MRS quad-rotor.

5.2.1 Experiments with Gazebo Simulation

Initially, using the XTDrone [67] robotic simulator on the Gazebo simulation platform, we set up the virtual
environment with a detector drone and target drone. On the detector drone, we set up the virtual RGB-D
camera to match the geometry of the RealSense D435i (same field of view and image resolution). The detected
results of the proposed drone detection with the RGB-D camera on an XTDrone simulator are shown in Figure
14.

Figure 14: Simulation Testing Results.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 29

D2.3 Collaborative Sensor Fusion

5.2.2 Experiments with Simulated Relative Position

The four state estimation algorithms mentioned in the previous section 3.7 are first tested on a public dataset.
The EuRoC Micro Aerial Vehicle (MAV) Dataset [68] is a collection of visual-inertial datasets acquired
from on-board MAVs. Each dataset contains stereo images, synchronized IMU measurements, and accu-
rate motion and structure ground-truth. To use this dataset to evaluate our sensor fusion algorithm, we select
V2_02_Medium as the target drone and V1_02_Medium as the detector drone. To simulate our MRS, the de-
tector drone uses image and IMU data to run its VIO algorithm, as well as a noisy groundtruth to that it uses
like a GPS. For the target drone, we use the IMU and a noisy groundtruth. This scenario simulates a loss of a
positioning sensor on the target drone that is replaced by a noisy estimates of its position. The relative posi-
tion is calculated by using the ground truth from the two datasets. In order to simulate the real relative position
measurement, different levels of noise are added to the ground truth of the relative position, from 1cm to 10cm.
The results of different algorithms (EKF, MSCKF, UKF, and SWLS) are shown from the Figure 15 to 18.

EKF Figure 15 shows the localization results obtained with the EKF method and the localization error. The
position in three direction is aligned with the ground truth. As expected, we can see that the localization error
is increasing with the increments of relative position noise. The maximum measured error is around 35cm,
with 5 large error peaks reaching an error above 25cm, otherwise, the error remains under 20cm. From Figure
15 we can see that the trajectory is mostly smooth for all noise values and remains close from the ground truth.
However, we can see that on the sharpest turns, the trajectory becomes noisier. We believe this is related to the
heading estimation of the drone that is acquired using the IMU only. These sensors are sensitive to noise and
are known to drift over time.

2 1 0 1 2 3
X (meter)

1

0

1

2

3

Y
(m

et
er

)

2 1 0 1 2 3
X (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

1 0 1 2 3
Y (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

Groundtruth
0 cm
1 cm
5 cm
10 cm

0 20 40 60 80
time (second)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Di
st

an
ce

 e
rro

r (
m

et
er

)

Distance error after alignment

0 cm
1 cm
5 cm
10 cm

Figure 15: Left: Different views of the aligned trajectories from the EKF method evaluated with different levels of simulated relative position noise.
Right: The distance error of the aligned trajectories for the EKF method evaluated with different levels of simulated relative position noise.

MSCKF Figure 16 shows the localization results obtained with the MSCKF method and the position error.
The MSCKF is a variant of EKF, so their results should be similar in terms of trajectory smoothness and
localization error. Nonetheless, the maximum error is smaller than the one of the EKF, with the first error peak
not exceeding 30cm. Compared to the EKF, with its five peaks above 25 cm, here, only one other error peak is
reaching above 25cm. Overall, the MSCKF seems to have a more consistent error than the EKF.

Page 30 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

3 2 1 0 1 2 3
X (meter)

1

0

1

2

3

Y
(m

et
er

)

3 2 1 0 1 2 3
X (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

1 0 1 2 3
Y (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

Groundtruth
0 cm
1 cm
5 cm
10 cm

0 20 40 60 80
time (second)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
st

an
ce

 e
rro

r (
m

et
er

)

Distance error after alignment

0 cm
1 cm
5 cm
10 cm

Figure 16: Left: Different views of the aligned trajectories from the MSCKF method evaluated with different levels of simulated relative position noise.
Right: The distance error of the aligned trajectories for the MSCKF method evaluated with different levels of simulated relative position noise.

UKF Figure 17 shows the localization results obtained with the UKF method and the position error. Looking
at the trajectory of the UKF, it can be seen that compared to the EKF the trajectory is less smooth. This is
particularly visible as the noise reaches 10cm. This behavior can clearly be seen on the error graph where
many narrow error peaks can be seen. In comparison, the EKF and MSCKF have fewer, but wider error peaks.
The behavior of the UKF is problematic for robotics and control application as the noisy position means that
the velocity is noisy as well. This will make velocity based control more complicated than if we were using
the EKF or MSCKF.

3 2 1 0 1 2 3
X (meter)

1

0

1

2

3

Y
(m

et
er

)

3 2 1 0 1 2 3
X (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

1 0 1 2 3
Y (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

Groundtruth
0 cm
1 cm
5 cm
10 cm

0 20 40 60 80
time (second)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
st

an
ce

 e
rro

r (
m

et
er

)

Distance error after alignment

0 cm
1 cm
5 cm
10 cm

Figure 17: Left: Different views of the aligned trajectories from the UKF method evaluated with different levels of simulated relative position noise.
Right: The distance error of the aligned trajectories for the UKF method evaluated with different levels of simulated relative position noise.

SWLS Figure 18 shows the localization results obtained with the SWLS method and the position error.
This method seems to be giving the worst results of all the tested algorithms. The trajectory is very noisy, at
both 5cm and 10cm noise. This is not surprising, as this method is particularly sensitive to the orientation of
the drone. Here the orientation estimation is particularly noisy as the orientation is given by an IMU alone.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 31

D2.3 Collaborative Sensor Fusion

Table 3: ATE (cm) of different algorithms (EKF, MSCKF, UKF, and SWLS) was evaluated with different levels of simulated relative position noise.

Noise EKF MSCKF UKF SWLS
0 8.665 8.434 8.119 8.015
1 8.830 8.599 8.243 8.369
5 10.740 10.163 9.802 13.302

10 14.354 12.231 12.457 18.732

In this kind of scenario, the roll and the pitch are often correct, they can be derived from the accelerometer
measurements, but the yaw can be wrong, as it is only computed using the integration of the gyroscope data.

3 2 1 0 1 2 3
X (meter)

1

0

1

2

3

Y
(m

et
er

)

3 2 1 0 1 2 3
X (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

1 0 1 2 3
Y (meter)

0.5

0.0

0.5

1.0

1.5

Z
(m

et
er

)

Groundtruth
0 cm
1 cm
5 cm
10 cm

0 20 40 60 80
time (second)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Di
st

an
ce

 e
rro

r (
m

et
er

)

Distance error after alignment

0 cm
1 cm
5 cm
10 cm

Figure 18: Left: Different views of the aligned trajectories from the SWLS method evaluated with different levels of simulated relative position noise.
Right: The distance error of the aligned trajectories for the SWLS method evaluated with different levels of simulated relative position noise.

Evaluation To evaluate the accuracy of the target drone estimated position, we use the ATE. Table 3 shows
the ATE of the different method for each level of noise. From this table, it can be observed that the UKF
achieves the best performance when relative position noise is lower than 10cm. Despite the noisy behavior
of the UKF, it outclasses all other filters as long as the error stays below 10cm. The second-best filter is the
MSCKF, performance wise it is the most accurate filter when the error reaches 10 cm. Unlike the UKF, it
generates a smooth trajectory, which is desirable for robotics application. In practice, on outdoor drones, the
error is likely be larger than 10cm. In our comparison, the accuracy of the MSCKF seems to be less sensitive to
the noise than the other filters: it is the filter with the smallest error increase when the noise level is increased.
Overall, we would recommend using the MSCKF, it appears to be more robust to noise than the UKF, and its
trajectories are smoother.

In addition to this test, we also deploy our sensor fusion algorithm in another scenario. This set up aims to
evaluate the behavior of our system when a loss of the global positioning occurs on the target drone. Initially,
the target drone has all of its sensors working and is being tracked by the detector drone. The global positioning
sensor of the target drone then fails, and it relies on the position given by the detector drone. After a few
seconds, the target drone recovers its global positioning sensor.

Here, the global position measurement is obtained from the motion capture system. To simulate the estimated
position of the target drone, we rely on the same technique as previously. The results given in Figure 19 show
the position being accurate for the first 30 seconds, then the target drone sensor fails, and we can see the error
in position increasing significantly. 20 seconds later, the global position is recovered and the position error

Page 32 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

quickly decreases. This example demonstrates the ability of our filter to deal with sensor losses, and recovery
of said sensor.

0 20 40 60 80
t (s)

0.2

0.1

0.0

0.1

0.2

X
(m

et
er

)

0 20 40 60 80
t (s)

0.2

0.1

0.0

0.1

0.2

Y
(m

et
er

)

0 20 40 60 80
t (s)

0.2

0.1

0.0

0.1

0.2

Z
(m

et
er

)

0 20 40 60 80
time (second)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
st

an
ce

 e
rro

r (
m

et
er

)

Distance error after alignment

10 cm

Figure 19: Left: Aligned trajectory error in three direction for EKF method evaluated with 10cm simulated relative position noise. Right: Aligned
trajectory distance error for EKF method evaluated with 10cm simulated relative position noise.

5.2.3 Indoor / AeroLab Testing

To validate the perception and collaborative sensor fusion algorithm, we use motion capture system, a very
accurate sensor capable of precisely recording the pose of marked objects. The pose acquired by the motion
capture system are then compared to the one obtained by the onboard camera and IMU (Figure 20). The setup
for this test uses an array of OptiTrack motion capture cameras (12 cameras) to determine the location of the
camera and the other UAV. At the same time, the onboard computer of the detector drone records the detections
and tracks obtained for the movement of the target drone.

In the scenario depicted in Figure 21, the two drones were flying in the AeroLab. The detector drone is
equipped with an onboard Nvidia Jetson Xavier NX and a RealSense D435i camera.

The detection results of the target drone from the proposed drone detection method in the AeroLab are shown
in Figure 22.

In an indoor environment, the semantic segmentation results are shown in Figure 23. Color encoding of
semantic class categories can be found in [69]. Here, we can see the ceiling in beige, the floor in brown, and
the walls in grey. The posters on the wall are confusing the network. When they are detected, the network
classifies them as signs/signboards while others as posters, which is a legitimate confusion. However, we can
see that the network is sometimes having trouble giving the same label to an object. In some of the images, the
posters are half classified as half posters, and half signs. This could be due to the network being too small to
extract large-scale context and maintain coherence across segmented objects.

We also tested our navigable space segmentation algorithm. Figure 24 shows the algorithm applied in an
outdoor environment. On it, we can see the point cloud of the camera as well as the flyable space map. The
color of each pixel in the map goes from 0 to 100. A cell with a value of 50 means that the highest point in the
cell is at the same height as the drone. A value under 50 (white) is lower than the drone, while a value above
50 is higher than the drone (black). Overall, the algorithm is fast and works well outdoor. However, it does
not work indoor because the ceiling is confused as an obstacle. Instead, for indoor environments, we would
recommend setting a maximum altitude, or rely on an octomap like representation.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 33

D2.3 Collaborative Sensor Fusion

Figure 20: Motion capture system setup for the in-lab testing.

Page 34 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

Figure 21: AeroLab for the Indoor Testing.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 35

D2.3 Collaborative Sensor Fusion

Figure 22: Sample Target Drone Detection Results.

Page 36 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

Figure 23: Sample Semantic Segmentation Results.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 37

D2.3 Collaborative Sensor Fusion

Figure 24: Flyable space segmentation map.

Page 38 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

6 Conclusions

This report describes the modules of the perception and collaborative sensor fusion within the SESAME
project. It defines their interfaces, input/output data, and the primary methods and algorithms of the mod-
ules. The development of these modules is drawn directly from the capabilities described in deliverable D2.1,
“Specification of MRS Capabilities.” Among all the use cases defined by SESAME, we selected the viticulture
use case using drones to demonstrate applicability of our algorithms in complex scenarios. The development
was divided into two parts. The first part described a perception, which forms the essential elements of the
drone detection, position estimation, and semantic segmentation. The second part detailed the sensor fusion,
which is central to the collaborative sensor fusion. Both parts are the description of the perception and collabo-
rative sensor fusion meant to accomplish the missions and tasks in the WP2 (Task 2.3) as part of the SESAME
project. They have been tested in simulation, and are in the process of being deployed jointly on real robots
in the AeroLab. To conclude, this report serves as a technical guideline for researchers and developers to im-
plement, integrate, deploy, and test core functionalities in perception and collaborative sensor fusion modules
along with the execution of this project.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 39

D2.3 Collaborative Sensor Fusion

References

[1] A. W. Stroupe and T. Balch, “Mission-relevant collaborative observation and localization,” in Multi-Robot
Systems: From Swarms to Intelligent Automata, pp. 31–40, Springer, 2002.

[2] S. Dong, K. Xu, Q. Zhou, A. Tagliasacchi, S. Xin, M. Nießner, and B. Chen, “Multi-robot collaborative
dense scene reconstruction,” ACM Transactions on Graphics (TOG), vol. 38, no. 4, pp. 1–16, 2019.

[3] B. D. Gouveia, D. Portugal, D. C. Silva, and L. Marques, “Computation sharing in distributed robotic
systems: A case study on slam,” IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 2, pp. 410–422, 2014.

[4] M. Vasic and A. Martinoli, “A collaborative sensor fusion algorithm for multi-object tracking using a
gaussian mixture probability hypothesis density filter,” in 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pp. 491–498, IEEE, 2015.

[5] R. Bajcsy, “Active perception,” Proceedings of the IEEE, vol. 76, no. 8, pp. 966–1005, 1988.

[6] T. Zwęgliński, “The use of drones in disaster aerial needs reconnaissance and damage assessment–three-
dimensional modeling and orthophoto map study,” Sustainability, vol. 12, no. 15, p. 6080, 2020.

[7] C. Gomez and H. Purdie, “Uav-based photogrammetry and geocomputing for hazards and disaster risk
monitoring–a review,” Geoenvironmental Disasters, vol. 3, no. 1, pp. 1–11, 2016.

[8] M. Hayeri Khyavi, “Rescue network: Using uavs (drones) in earthquake crisis management,” arXiv e-
prints, pp. arXiv–2105, 2021.

[9] W. Blake and I. Burger, “Small drone detection using airborne weather radar,” in 2021 IEEE Radar
Conference (RadarConf21), pp. 1–4, IEEE, 2021.

[10] S. Dogru and L. Marques, “Drone detection using sparse lidar measurements,” IEEE Robotics and Au-
tomation Letters, vol. 7, no. 2, pp. 3062–3069, 2022.

[11] Q. Gao, A. Parslow, and M. Tan, “Object motion detection based on perceptual edge tracking,” in Pro-
ceedings Second International Workshop on Digital and Computational Video, pp. 78–85, IEEE, 2001.

[12] J. Lai, L. Mejias, and J. J. Ford, “Airborne vision-based collision-detection system,” Journal of Field
Robotics, vol. 28, no. 2, pp. 137–157, 2011.

[13] S. R. Ganti and Y. Kim, “Implementation of detection and tracking mechanism for small uas,” in 2016
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1254–1260, IEEE, 2016.

[14] J. Li, D. H. Ye, T. Chung, M. Kolsch, J. Wachs, and C. Bouman, “Multi-target detection and tracking
from a single camera in unmanned aerial vehicles (uavs),” in 2016 IEEE/RSJ international conference on
intelligent robots and systems (IROS), pp. 4992–4997, IEEE, 2016.

[15] Y. Wu, Y. Sui, and G. Wang, “Vision-based real-time aerial object localization and tracking for uav
sensing system,” IEEE Access, vol. 5, pp. 23969–23978, 2017.

[16] M. Saqib, S. D. Khan, N. Sharma, and M. Blumenstein, “A study on detecting drones using deep con-
volutional neural networks,” in 2017 14th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pp. 1–5, IEEE, 2017.

[17] C. Aker and S. Kalkan, “Using deep networks for drone detection,” in 2017 14th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6, IEEE, 2017.

Page 40 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

[18] D. H. Ye, J. Li, Q. Chen, J. Wachs, and C. Bouman, “Deep learning for moving object detection and
tracking from a single camera in unmanned aerial vehicles (uavs),” Electronic Imaging, vol. 2018, no. 10,
pp. 466–1, 2018.

[19] S. Arunachalam.T, “Flying object detection and classification using deep neural networks,” International
Journal of Engineering Trends and Technology, vol. 67, no. 03, pp. 124–130, 2019.

[20] M. Nalamati, A. Kapoor, M. Saqib, N. Sharma, and M. Blumenstein, “Drone detection in long-range
surveillance videos,” in 2019 16th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), pp. 1–6, IEEE, 2019.

[21] D. K. Behera and A. B. Raj, “Drone detection and classification using deep learning,” in 2020 4th In-
ternational Conference on Intelligent Computing and Control Systems (ICICCS), pp. 1012–1016, IEEE,
2020.

[22] Q. Shi and J. Li, “Objects detection of uav for anti-uav based on yolov4,” in 2020 IEEE 2nd International
Conference on Civil Aviation Safety and Information Technology (ICCASIT, pp. 1048–1052, IEEE, 2020.

[23] M. W. Ashraf, W. Sultani, and M. Shah, “Dogfight: Detecting drones from drones videos,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7067–7076, 2021.

[24] D. T. W. Xun, Y. L. Lim, and S. Srigrarom, “Drone detection using yolov3 with transfer learning on nvidia
jetson tx2,” in 2021 Second International Symposium on Instrumentation, Control, Artificial Intelligence,
and Robotics (ICA-SYMP), pp. 1–6, IEEE, 2021.

[25] B. K. Isaac-Medina, M. Poyser, D. Organisciak, C. G. Willcocks, T. P. Breckon, and H. P. Shum, “Un-
manned aerial vehicle visual detection and tracking using deep neural networks: A performance bench-
mark,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1223–1232,
2021.

[26] S. Singha and B. Aydin, “Automated drone detection using yolov4,” Drones, vol. 5, no. 3, p. 95, 2021.

[27] H. Liu, K. Fan, Q. Ouyang, and N. Li, “Real-time small drones detection based on pruned yolov4,”
Sensors, vol. 21, no. 10, p. 3374, 2021.

[28] A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, M. Méndez, D. De la Iglesia,
I. González, J.-P. Mercier, et al., “Drone vs. bird detection: Deep learning algorithms and results from a
grand challenge,” Sensors, vol. 21, no. 8, p. 2824, 2021.

[29] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: A comprehensive survey from bottom-up to semantic
image segmentation and cosegmentation,” Journal of Visual Communication and Image Representation,
vol. 34, pp. 12–27, 2016.

[30] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for image understanding: Multi-class ob-
ject recognition and segmentation by jointly modeling texture, layout, and context,” International journal
of computer vision, vol. 81, no. 1, pp. 2–23, 2009.

[31] Y. Wei, Z. Wang, and M. Xu, “Road structure refined cnn for road extraction in aerial image,” IEEE
Geoscience and Remote Sensing Letters, vol. 14, no. 5, pp. 709–713, 2017.

[32] M. Tschannen, L. Cavigelli, F. Mentzer, T. Wiatowski, and L. Benini, “Deep structured features for
semantic segmentation,” in 2017 25th European Signal Processing Conference (EUSIPCO), pp. 61–65,
IEEE, 2017.

[33] K. Chen, K. Fu, X. Sun, M. Weinmann, S. Hinz, B. Jutzi, and M. Weinmann, “Deep semantic segmenta-
tion of aerial imagery based on multi-modal data,” in IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium, pp. 6219–6222, IEEE, 2018.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 41

D2.3 Collaborative Sensor Fusion

[34] S. Wei, S. Ji, and M. Lu, “Toward automatic building footprint delineation from aerial images using cnn
and regularization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 3, pp. 2178–
2189, 2019.

[35] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, “Semantic understanding of
scenes through the ade20k dataset,” International Journal of Computer Vision, vol. 127, no. 3, pp. 302–
321, 2019.

[36] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Semantic understanding of scenes
through the ade20k dataset,” arXiv preprint arXiv:1608.05442, 2016.

[37] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through ade20k
dataset,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[38] C. Chen, H. Zhu, M. Li, and S. You, “A review of visual-inertial simultaneous localization and mapping
from filtering-based and optimization-based perspectives,” Robotics, vol. 7, no. 3, p. 45, 2018.

[39] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust and modular multi-sensor fusion
approach applied to mav navigation,” in 2013 IEEE/RSJ international conference on intelligent robots
and systems, pp. 3923–3929, IEEE, 2013.

[40] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-time onboard visual-inertial state es-
timation and self-calibration of mavs in unknown environments,” in 2012 IEEE international conference
on robotics and automation, pp. 957–964, IEEE, 2012.

[41] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion for robust autonomous flight
in indoor and outdoor environments with a rotorcraft mav,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 4974–4981, IEEE, 2014.

[42] T. Qin, J. Pan, S. Cao, and S. Shen, “A general optimization-based framework for local odometry estima-
tion with multiple sensors,” arXiv preprint arXiv:1901.03638, 2019.

[43] T. Qin, S. Cao, J. Pan, and S. Shen, “A general optimization-based framework for global pose estimation
with multiple sensors,” arXiv preprint arXiv:1901.03642, 2019.

[44] G. Huang, “Visual-inertial navigation: A concise review,” in 2019 international conference on robotics
and automation (ICRA), pp. 9572–9582, IEEE, 2019.

[45] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang, and G. Huang, “Openvins: A research platform for
visual-inertial estimation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA),
pp. 4666–4672, IEEE, 2020.

[46] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” IEEE Trans-
actions on Robotics, 2022.

[47] R. Jung and S. Weiss, “Scalable recursive distributed collaborative state estimation for aided inertial
navigation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1896–
1902, IEEE, 2021.

[48] R. Jung, C. Brommer, and S. Weiss, “Decentralized collaborative state estimation for aided inertial nav-
igation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 4673–4679,
IEEE, 2020.

[49] R. Jung and S. Weiss, “Modular multi-sensor fusion: A collaborative state estimation perspective,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 6891–6898, 2021.

Page 42 Version 1.0
Confidentiality: Public Distribution

5 September 2022

D2.3 Collaborative Sensor Fusion

[50] P. Zhu, Y. Yang, W. Ren, and G. Huang, “Cooperative visual-inertial odometry,” in 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 13135–13141, IEEE, 2021.

[51] P. Zhu, P. Geneva, W. Ren, and G. Huang, “Distributed visual-inertial cooperative localization,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8714–8721, IEEE,
2021.

[52] H. Xu, Y. Zhang, B. Zhou, L. Wang, X. Yao, G. Meng, and S. Shen, “Omni-swarm: A decen-
tralized omnidirectional visual-inertial-uwb state estimation system for aerial swarm,” arXiv preprint
arXiv:2103.04131, 2021.

[53] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv preprint arXiv:1711.02508, 2017.

[54] YOLOv5, “Yolov5,” 2022. Last accessed April 2022.

[55] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval research logistics quarterly,
vol. 2, no. 1-2, pp. 83–97, 1955.

[56] M. C. V. team, “Semantic segmentation for ros in pytorch,” 2022. Last accessed April 2022.

[57] M. Larsson, E. Stenborg, L. Hammarstrand, M. Pollefeys, T. Sattler, and F. Kahl, “A cross-season cor-
respondence dataset for robust semantic segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9532–9542, 2019.

[58] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, and Y. Zhang,
“Matterport3d: Learning from rgb-d data in indoor environments,” arXiv preprint arXiv:1709.06158,
2017.

[59] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner, “Scannet: Richly-annotated
3d reconstructions of indoor scenes,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5828–5839, 2017.

[60] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,” The International
Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[61] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: An efficient prob-
abilistic 3D mapping framework based on octrees,” Autonomous Robots, 2013. Software available at
https://octomap.github.io.

[62] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Ro-
bust stereo visual inertial odometry for fast autonomous flight,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 965–972, 2018.

[63] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating generic sensor fusion algorithms with
sound state representations through encapsulation of manifolds,” Information Fusion, vol. 14, no. 1,
pp. 57–77, 2013.

[64] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular visual-inertial state estimator,”
IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[65] Pixhawk, “Pixhawk 4,” 2022. Last accessed April 2022.

[66] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al., “Ros: an
open-source robot operating system,” in ICRA workshop on open source software, vol. 3, p. 5, Kobe,
Japan, 2009.

[67] XTDrone, “Xtdrone,” 2022. Last accessed April 2022.

5 September 2022 Version 1.0
Confidentiality: Public Distribution

Page 43

https://octomap.github.io

D2.3 Collaborative Sensor Fusion

[68] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart, “The
euroc micro aerial vehicle datasets,” The International Journal of Robotics Research, vol. 35, no. 10,
pp. 1157–1163, 2016.

[69] M. C. V. team, “Color coding semantic segmentation classes,” 2022. Last accessed April 2022.

Page 44 Version 1.0
Confidentiality: Public Distribution

5 September 2022

	 Introduction
	 Document Purpose
	 Document Structure
	 Relationship to other Deliverables

	 Related Work
	Perception
	Drone Detection
	Semantic Segmentation

	Collaborative Sensor Fusion

	Methods
	Notations and Generalities
	Drone Detection
	Drone Detection Training Dataset
	Drone Detection Algorithms
	YOLOv5 Network Architecture
	YOLOv5 Training and Inference

	Position Estimation
	Object Tracking
	Image Frame Tracking
	Global Frame Tracking
	Association

	Segmentation
	Semantic Segmentation
	Navigable Space Segmentation

	Generic Sensor Fusion Theory
	Notation and Generalities
	Extended Kalman Filter
	Multi-State Constraint Kalman Filter
	Unscented Kalman Filter
	Sliding Window Least Square

	Collaborative Sensor Fusion: UAV Use Case
	Dynamic and Measurement Model
	Particularization

	Software and Hardware Architecture
	 Experimental Setup
	Detector Drone
	Target Drone

	 Experimental Overview and Results
	 Experimental Overview
	 Experimental Results
	Experiments with Gazebo Simulation
	Experiments with Simulated Relative Position
	Indoor / AeroLab Testing

	 Conclusions

